ClimODE: Climate and Weather Forecasting with Physics-Informed Neural ODEs

- 1. Climax: A foundational model for weather and climate, ICML 2023
- 2. FourCastNet: A Global Data-driven High resolution weather model, PASC 2023
- 3. Learning skillful medium-range global weather forecasting, Science, 2023
- **ECMWF, IFS Documentation CY48R1**
- 5. Neural Ordinary Differential Equations, NeurIPS 2018

We model weather/climate as a spatiotemporal process **u**(x,t) $= (u_1(x,t),...,u_k(x,t))$ of K quantities as an advection PDE:

$\dot{u}_k(x,t) = -\mathbf{v}_k^{\mathsf{T}}(x,t) \nabla u_k(x,t) - u_k(x,t) \text{tr}(\nabla \mathbf{v}_k(x,t))$

Flow velocity v

We model change in the velocity with a neural flow, as a function of observed values $u(t)$, ∇u , $v(t)$ and spatio-temporal embeddings Ψ

$$
\dot{\mathbf{v}}_k(x,t) = f_\theta\big(\mathbf{u}(t), \nabla \mathbf{u}(t), \mathbf{v}(t), \psi\big)
$$

Experiments

- 1. Solve **u**(t) forward
- 2. Evaluate likelihood
- 3. Backpropagate wrt θ , ϕ

Aalto University & **YaiYai Ltd**

Neural Transport Model

References

Training Objective

Advection PDE

Objective

Issues with black box modeling

Sources and Uncertainty

Limitation of vanilla advection and limitation of vanilla advection and limitation

Optimise the log likelihood over the observations,

 $\log p(y | \theta, \phi) \propto \sum_{i} \log \mathcal{N}\left(y_i | \mathbf{u}_{\theta}(t_i) + \mu_{\phi}(t_i), \text{diag}(\sigma_{\phi}(t_i))\right)$ $\int_{t_0}^{t} \left[\dot{\mathbf{u}}(\tau)\right] d\tau$ $\begin{bmatrix} \mathbf{u}(t) \\ \mathbf{v}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{u}(t_0) \\ \mathbf{v}(t_0) \end{bmatrix} + \int_{t_0}^{t_0}$

- Black box methods based on Transformers, UNets, etc overlook the **physical dynamics (P)** and **continuous time (CT) nature** and are not **compact (C).**
- **● Free-form Neural PDEs** do not include any physical dynamics but solve for continuous time

Neural PDE X V X Transformer X X X

Model and forecast weather and climate:

$$
\mathbf{u}(\mathbf{x},t) = \begin{pmatrix} u_1(\mathbf{x},t) \\ \vdots \\ u_K(\mathbf{x},t) \end{pmatrix} \begin{matrix} \text{Temperature} \\ \text{Frecipitation} \end{matrix} \quad \mathbf{u}(x,t) = \mathbf{u}(x,0) - \mathbf{u}(x,0) + \mathbf{u}(x,0) + \mathbf{u}(x,0) + \mathbf{u}(x,0) + \mathbf{u}(x,0) + \mathbf{u}(x,0) \end{matrix}
$$

- 1. Closed system assumption
- 2. ODE is deterministic

Yogesh Verma, Markus Heinonen, Vikas Garg (yogesh.verma@aalto.fi , markus.o.heinonen@aalto.fi , vgarg@csail.mit.edu)

Idea :

- 1. Gaussian emission model
- 2. Model predicts mean forecasts and uncertainty

 $u_k^{\text{obs}}(x, t) \sim \mathcal{N}\Big(u_k(x, t) + \mu_k(x, t), \sigma_k^2(x, t)\Big),$ $\mu_k(x, t), \sigma_k(x, t) = g_{\phi}(\mathbf{u}(x, t), \psi)$.

To capture **local** and **global** effects, we propose a hybrid network

$$
f_{\theta}\Big(\mathbf{u}(t), \nabla \mathbf{u}(t), \mathbf{v}(t), \psi\Big) = f_{\text{conv}}\Big(\mathbf{u}(t), \nabla \mathbf{u}(t), \mathbf{v}(t)\Big)
$$

Contributions

- Develop Neural ODEs/PDEs that
	- **Respect P**, **are CT and C**
	- **● Provide uncertainty estimates**

unknown

 $\dot{\mathbf{u}}(x, t) dt$

ClimODE

- 1. Movement of quantities *u* (scalar field) due to velocity **v** (vector field)
- 2. Value-conserving dynamics

$$
\frac{\partial u}{\partial t} + \mathbf{v} \cdot \nabla u + u \nabla \cdot \mathbf{v} = 0
$$

Time evolution *u*